Abstract

The ideal water conditions for maximizing the performance of the nursery culture of glass eels harvested from the wild for aquaculture need to be determined for the New Zealand shortfin (Anguilla australis) and longfin (Anguilla dieffenbachii) eels. This study determined the survival and growth of glass eels reared under different temperature and salinity conditions in the laboratory. The growth and survival of shortfin and longfin glass eels reared in salt water (35‰) maintained at 25 °C was examined over 84 days from capture. The mean specific growth rate (SGR) was higher in shortfin [2.30±0.29% body weight (b.w.) day−1] than longfin glass eels (1.52±0.06% b.w. day−1), and survival was also higher in shortfin (76.0±4.16%) than for longfin glass eels (28.7±6.36%). A second experiment identified the effect of salinity (0, 17.5‰ and 35‰) and temperature (17.5 and 26.5 °C) on the acclimation, growth performance and survival of shortfin and longfin glass eels over a period of 84 days from capture. There was no incidence of mortality for either shortfin or longfin glass eels reared across all salinity treatments (0‰, 17.5‰ and 35‰) at 26.5 °C, while survival of shortfin and longfin glass eels reared at 17.5 °C was the highest in 17.5‰, followed by 35‰ and 0‰ treatments. Both temperature and salinity affected the SGR of shortfin glass eels, with the highest SGR observed for shortfin glass eels reared in 0‰ water maintained at 26.5 °C. In longfin glass eels, salinity alone had an effect on the SGR, with the highest SGR observed in glass eels reared in 0‰ water regardless of the water temperature (17.5 and 26.5 °C). In addition, the adaptability of glass eels to salinity was evaluated from the development and the physiological responses of gill chloride cell (CC) morphology. The number and size of CCs increased significantly with increasing salinity in both shortfin and longfin eels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.