Abstract

Agave plants are natives of Mexico and have an important role in the functional food industry. Agave salmiana grows in dry and desert soils, which are high in salt content; however, little is known about its response to saline conditions. In this study, A. salmiana plants grown in vitro were exposed to 0.1, 0.5, and 1.0 mM of salt elicitors, including AlCl3, NaCl, and CoCl2, and saponin synthesis and morphological characteristics were examined. Saponins were identified and quantified in ethanolic extracts using HPLC-ELSD. Root length and number, leaf length and number, and plant fresh weight were evaluated to determine the phenological condition of the plant. The presence of salts at various concentrations did not affect the physiological characteristics of the plant. Moreover, 0.5 mM NaCl induced a higher production of total saponin. Chlorogenin glycoside 1 (CG1) and hecogenin glycoside 1 (HG1) content remained unchanged across treatments. By contrast, CG2 and HG2 concentrations tended to decrease in response to increased concentrations of AlCl3, NaCl, or CoCl2. In vitro salt elicitors could be a feasible tool in the synthesis of specific saponins, without compromising on plant biomass. Our findings can be used in further generation of low saponin agave plants in field for the improvement of fermentation yield.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.