Abstract

Respiratory infection can be exacerbated by the high glucose concentration in the airway surface liquid (ASL). We investigated the effects of salbutamol and phlorizin on the pulmonary function, oxidative stress levels and SGLT1 activity in lung, pulmonary histopathological damages and survival rates of rats with sepsis. Sepsis was induced by cecal ligation and puncture surgery (CLP). Twenty-four hours after surgery, CLP rats were intranasally treated with saline, salbutamol or phlorizin. After 2 hours, animals were anesthetized and sacrificed. Sepsis promoted atelectasis and bronchial inflammation, and led to increased expression of SGLT1 on cytoplasm of pneumocytes. Salbutamol treatment reduced bronchial inflammation and promoted hyperinsuflation in CLP rats. The interferon-ɤ and Interleucin-1β concentrations in bronchoalveolar lavage (BAL) were closely related to the bronchial inflammation regulation. Salbutamol stimulated SGLT1 in plasma membrane; whereas, phlorizin promoted the increase of SGLT1 in cytoplasm. Phlorizin reduced catalase activity and induced a significant decrease in the survival rate of CLP rats. Taken together, sepsis promoted atelectasis and lung inflammation, which can be associated with SGLT1 inhibition. The loss of function of SGLT1 by phlorizin are related to the augmented disease severity, increased atelectasis, bronchial inflammation and a significant reduction of survival rate of CLP rats. Alternatively salbutamol reduced BAL inflammatory cytokines, bronchial inflammation, atelectasis, and airway damage in sepsis. These data suggest that this selective β2-adrenergic agonist may protect lung of septic acute effects.

Highlights

  • Sepsis is a serious clinical condition that represents a response to a severe infection that may lead to multiple organs damage and acute lung injury [1]

  • The present study indicates that sepsis induces atelectasis, bronchial inflammation and airway damage

  • The intranasal salbutamol treatment of lungs in septic rats showed increased of the SGLT1 expression in luminal membrane of lung alveolar cells, reduction of atelectasis, bronchial inflammation and reduction of airway damage, suggesting a potential benefit in acute respiratory distress syndrome (ARDS) secondary to sepsis

Read more

Summary

Introduction

Sepsis is a serious clinical condition that represents a response to a severe infection that may lead to multiple organs damage and acute lung injury [1]. Among other complications, promotes ventilatory dysfunction [7] as well as impairment on the cardiorespiratory responses to chemoreflex activation in awake rats [8]. These changes are associated with the increase of inflammatory cytokines in bronchoalveolar lavage (BAL) as interferon (IFN)-gamma, Interleucin-1β, interleukin-6 and tumor necrosis factor alpha (TNF-alpha) [9], and its inflammatory balance is related to the severity and mortality of murine sepsis [9]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.