Abstract
Dynamic changes in intracellular free Ca 2+ concentration play a crucial role in various neural functions. The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and the ryanodine (Ry) receptor (RyR) are involved in Ca 2+-induced Ca 2+-release (CICR). Recent studies have shown that type 3 IP3R is highly expressed in rat hippocampal neurons after kainic acid (KA)-induced seizures and that dantrolene, a RyR antagonist, reduces KA-induced neuronal cell death. We investigated the RyR-associated effects of CICR agents on basal and K +-evoked releases of GABA and glutamate in rat hippocampus and the changes in expression of mRNA for RyRs in mouse brain after KA-induced seizures. The stimulatory effect of Ry on releases of GABA and glutamate was concentration-dependent in a biphasic manner. The inflection point in concentration–response curves for Ry on GABA release was lower than that for glutamate in both basal and K +-evoked conditions, suggesting that hyperactivation of RyR-associated CICR produces the imbalance between GABAergic and glutamatergic transmission. Following KA-induced seizures, transient up-regulation of brain-type RyR mRNA was observed in the hippocampal CA3 region and striatum, and signals for c-Fos mRNA increased transiently in the hippocampus, dentate gyrus and deeper layers of the neocortex. Thereafter, some dead neurons with single-stranded DNA (ssDNA) immunoreactive fragmented nuclei appeared in these areas. These findings suggest that intracellular Ca 2+ release via the RyR might be one of the mechanisms involved in KA-induced neuronal cell death.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Epilepsy Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.