Abstract

Loss of skeletal muscle function is linked to increased risk for loss of health and independence in older adults. Dietary interventions that can enhance aging muscle function, alone or in combination with exercise, may offer an effective way to reduce these risks. The goal of this study was to evaluate the muscular effects of beta-hydroxy-beta-methylbutyrate (HMB) and beta-alanine (β-Ala) co-supplementation in aged Sprague-Dawley rats with voluntary access to running wheels (RW). Aged (20 months) rats were housed with ad libitum access to RW while on a purified diet for 4 weeks, then balanced for RW activity and assigned to either a control or an experimental diet (control + HMB and β-Ala) for the next 4 weeks (n = 10/group). At the end of the study, we assessed muscle size, in situ force and fatigability in the medial gastrocnemius muscles, as well as an array of protein markers related to various age- and activity-responsive signaling pathways. Dietary HMB+β-Ala did not improve muscle force or fatigue resistance, but a trend for increased muscle cross-sectional area (CSA) was observed (P = 0.077). As a result, rats on the experimental diet exhibited reduced muscle quality (force/CSA; P = 0.032). Dietary HMB+β-Ala reduced both the abundance of PGC1-α (P = 0.050) and the ratio of the lipidated to non-lipidated forms of microtubule-associated protein 1 light chain 3 beta (P = 0.004), markers of mitochondrial biogenesis and autophagy, respectively. Some alterations in myostatin signaling also occurred in the dietary HMB+β-Ala group. There was an unexpected difference (P = 0.046) in RW activity, which increased throughout the study in the animals on the control diet, but not in animals on the experimental diet. These data suggest that the short-term addition of dietary HMB+β-Ala to modest physical activity provided little enhancement of muscle function in this model of uncomplicated aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.