Abstract

We report the investigations of crystal structure, electrical resistivity (ρ), magnetization (M), x-ray photoelectron spectroscopy (XPS), specific heat (CP), thermal conductivity (κ), and thermoelectric power (TEP) on La0.7Sr0.3(Mn1−xRux)O3 (LSMRO) compounds with x=0 to 0.90. From the analyzes of crystal structure and magnetization measurements, it is inferred that Ru should have a mixed valence of Ru3+ and Ru4+ for LSMRO with low level of Ru substitution, and an additional mixed valence of Ru4+ and Ru5+ with higher Ru substitution. Such a finding is further confirmed by the XPS measurements. Besides, it is found that all measured physical properties undergo pronounced anomalies due to the ferromagnetic-paramagnetic phase transition, and the observed transport properties of LSMRO can be reasonably understood from the viewpoint of polaronic transport. The Curie temperatures TC determined from the magnetization measurements are consistently higher than those of the metal-insulator transitions TMI determined from the transport measurements. By replacing Mn with Ru, both TC and TMI decrease concurrently and the studied materials are driven toward the insulating phase with larger value of x. It is also found that the entropy change during the phase transition is reduced with more Ru substitution. These observations indicate that the existence of Ru has the effect of weakening the ferromagnetism and metallicity of the LSMRO perovskites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.