Abstract
BackgroundProprotein convertase 1/3 (PC1/3) is one of the endoproteases initiating the proteolytic activation of prohormones and proneuropeptides in the secretory pathway. It is produced as a zymogen that is subsequently modified by activity-determining cleavages at the amino and the carboxyl termini. In human, it is encoded by the PCSK1 locus on chromosome 5. Spontaneous inactivating mutations in its gene have been linked to obesity. Minor alleles of the common non-synonymous single-nucleotide polymorphisms (SNPs) rs6232 (T>C, N221D), rs6234 (G>C, Q665E) and rs6235 (C>G, S690T) have been associated with increased risk of obesity. We have shown that the variations associated with these SNPs are linked on minor PCSK1 alleles. GoalIn this study, we examined the impact of amino acid substitutions specified by the minor PCSK1 alleles on PC1/3 biosynthesis and prohormone processing activity in cultured cells. MethodsThe common and variant isoforms of PC1/3 were expressed in transfected rat pituitary GH4C1 cells with or without proopiomelanocortin (POMC) as a substrate. Secreted PC1/3- or POMC-related proteins and peptides were analyzed by immunoblotting and immunoprecipitation. ResultsWhen expressed in GH4C1 cells, the triple-variant PC1/3 underwent significantly more proteolytic processing at the amino and carboxyl termini than the common and double-variant isoforms. However, there was no detectable difference among these isoforms in their ability to process POMC in the transfected cells. ConclusionsSince truncation of PC1/3 in its C-terminal region reportedly renders the enzyme unstable, we speculate that the accentuated processing of the triple variant in this region may, in vivo, create a subtle deficit of PC1/3 enzymatic activity in endocrine and neuroendocrine cells, causing impaired processing of prohormones and proneuropeptides to their bioactive forms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.