Abstract

AbstractDeposition and resuspension mechanisms in particle-laden turbulent flows are dominated by the coherent structures arising in the wall region. These turbulent structures, which control the turbulent regeneration cycles, are affected by the roughness of the wall. The particle-laden turbulent flow in a channel bounded by irregular two-dimensional rough surfaces is analysed. The behaviour of dilute dispersions of heavy particles is analysed using direct numerical simulations (DNS) to calculate the three-dimensional turbulent flow and Lagrangian tracking to describe the turbophoretic effect associated with two-phase turbulent flows in a complex wall-bounded domain. Turbophoresis is investigated in a quantitative way as a function of the particle inertia. The analysis of the particle statistics, in term of mean particle concentration and probability density function (p.d.f.) of wall-normal particle velocity, shows that the wall roughness produces a completely different scenario compared to the classical smooth wall. The effect of the wall roughness on the particle mass flux is shown for six particle populations having different inertia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call