Abstract
The rotational direction of a pot in a planetary ball mill and its speed ratio against revolution of a disk were studied in terms of their effects on the specific impact energy of balls calculated from the simulation on the basis of the Discrete Element Method (DEM) and structural change of talc during milling. The specific impact energy of balls is measured as a significantly large value, and the structure of talc is transferred into an amorphous state quickly when the mill pot is rotated in the counter direction against the revolution. In both rotation–revolution relationships, the specific impact energy increases with an increase in the rotation-to-revolution speed ratio in the initial stage and then falls around the critical speed ratio, which can be calculated by the balance equation based on the centrifugal forces acting on a ball due to the combination of the rotation and revolution. The highest value in the specific impact energy of balls during milling can be achieved effectively around this critical speed. This critical speed would, therefore, be a key condition in milling for designing suitable and optimum mechanical milling performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.