Abstract
The stereodynamics of the title reaction on the ground 1 1A′ potential energy surface (PES) has been studied using quasi-classical trajectory (QCT) method. Collision energy of 6.4 kcal/mol is considered, and vector properties including angular momentum alignment distributions and polarization-dependent differential cross-sections (PDDCS) of the product OH are presented. Furthermore, the influence of reagent rotational excitation and vibrational excitation on the product vector properties has also been studied in the present work. The results indicate that the distribution of the P(θr) and P(ϕr) are sensitively affected by the rotational and vibrational excitation. The rotational excitation decreases the degree of alignment and orientation, while vibrational excitation increases the degree of alignment and orientation. The PDDCS (2π/σ)(dσ20/dωt) and (2π/σ)(dσ22+/dωt) are sensitively influenced by rotational and vibrational excitations, while the PDDCS ((2π/σ)(dσ00/dωt)) and (2π/σ)(dσ21-/dωt) are not. The preference of forward scattering has been found from the results of PDDCS ((2π/σ)(dσ00/dωt)), which is in good agreement with the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Theoretical and Computational Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.