Abstract
The issue of which stars may reach the conditions of electron/positron pair formation instability is of importance to understand the final evolution both of the first stars and of contemporary stars. The criterion to enter the pair instability regime in density and temperature is basically controlled by the mass of the oxygen core. The main sequence masses that produce a given oxygen core mass are, in turn, dependent on metallicity, mass loss, and convective and rotationally-induced mixing. We examine the evolution of massive stars to determine the minimum main sequence mass that can encounter pair-instability effects, either a pulsational pair instability (PPISN) or a full-fledged pair-instability supernova (PISN). We concentrate on zero-metallicity stars with no mass loss subject to the Schwarzschild criterion for convective instability, but also explore solar metallicity and mass loss and the Ledoux criterion. As expected, for sufficiently strong rotationally-induced mixing, the minimum main sequence mass is encountered for conditions that induce effectively homogeneous evolution such that the original mass is converted almost entirely to helium and then to oxygen. For this case, we find that the minimum main sequence mass is ~40 Msun to encounter PPISN and ~65 Msun to encounter a PISN. When mass-loss is taken into account those mass limits become ~50 Msun for PPISN and ~80 Msun for PISN progenitors. The implications of these results for the first stars and for contemporary supernovae is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.