Abstract

We investigate the effects of rotation on the behavior of the helium burning shell source in accreting carbon-oxygen white dwarfs, in the context of the single degenerate Chandrasekhar mass progenitor scenario for Type Ia supernovae (SNe Ia). We model the evolution of helium accreting white dwarfs of initially 1 Msun, assuming four different constant accretion rates (2, 3, 5 and 10 times10^{-7} Msun/yr). In a one-dimensional approximation, we compute the mass accretion and subsequent nuclear fusion of helium into carbon and oxygen, as well as angular momentum accretion, angular momentum transport inside the white dwarf, and rotationally induced chemical mixing. Our models show two major effects of rotation: a) The helium burning nuclear shell source in the rotating models is much more stable than in corresponding non-rotating models -- which increases the likelihood of accreting white dwarfs to reach the stage of central carbon ignition. This effect is mainly due to rotationally induced mixing at the CO/He interface which widens the shell source, and due to the centrifugal force lowering the density and degeneracy at the shell source location. b) The C/O-ratio in the layers which experience helium shell burning -- which may affect the energy of a SN Ia explosion -- is strongly decreased by the rotationally induced mixing of alpha-particles into the carbon-rich layers. We discuss implications of our results for the evolution of SNe Ia progenitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.