Abstract

In this paper, a numerical method based on the Chebyshev tau method is applied to analyze the effects of rotation and magnetic fields on Rayleigh-Bénard convection. The rotation and magnetic fields are assumed to be parallel to the vertical direction. The perturbation equations and boundary conditions are analyzed using normal mode analysis. The equations are then converted into a non-dimensional form and transformed into a generalized eigenvalue problem of the form AX=RBX, where R represents the eigenvalue corresponding to the Rayleigh number. The MATLAB software package is utilized to determine the relationship between the Rayleigh number and the Taylor number (rate of rotation), as well as the relationship between the Rayleigh number and the magnetic parameter (strength of the magnetic field) for different boundary conditions (free-free, rigid-rigid, or one free and the other rigid). The numerical and graphical results are presented and found to be in full agreement with the results obtained from previous analytical and numerical studies of the problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.