Abstract
AbstractThe properties of Rayleigh wave velocity are analyzed by considering the rotation and electric bias. The algebraic equation is derived for determining the piezoelectric Rayleigh wave velocity analytically and numerically for Lithium Niobate. The main results reveal that the rotation as well as electric bias has exerted an appreciable influence on the wave velocity. Particularly, the Coriolis force under the rotatory condition can decrease wave velocity considerably, and such attributes are significant for the acoustic electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.