Abstract

Human serum paraoxonase contributes to the anti-atherogenic effect of high-density lipoprotein cholesterol (HDL-C) and has been shown to protect both low-density lipoprotein cholesterol (LDL-C) and HDL-C against lipid peroxidation. We investigated the effects of rosiglitazone on paraoxonase activity and metabolic parameters in patients with type 2 diabetes mellitus [50 patients (30 males, 20 females); mean±SD age: 58.7±9.2 years, body mass index: 28.2±4.1'kg/m2], in whom glucose control could not be achieved despite treatment with metformin, sulphonylurea, and/or insulin. The patients were given 4'mg/day rosiglitazone for 3 months in addition to their usual treatment. Serum paraoxonase activity, malondialdehyde, homocysteine, and lipid profile were measured at the time of initiation and at the end of therapy with rosiglitazone. After rosiglitazone therapy, serum levels of HDL-C, apolipoprotein A-1, and paraoxonase activity increased significantly (P<0.05) and malondialdehyde, homocysteine, lipoprotein(a), and glucose levels decreased significantly (P<0.05), but no significant changes in levels of total cholesterol and apolipoprotein B were observed. Triglyceride levels also increased significantly (P<0.05). Rosiglitazone treatment led to an improvement in glycemic control and to an increase in paraoxonase activity and HDL-C levels. Although rosiglitazone showed favorable effects on oxidant/antioxidant balance and lipid profile, further studies are needed to determine the effect of rosiglitazone on cardiovascular risk factors and cardiovascular morbidity and mortality.

Highlights

  • Paraoxonase (PON1; E.C.3.1.8.1), a 43-kDa protein, catalyzes the hydrolysis of organophosphate esters, aromatic carboxylic acid esters, and carbamates in a calcium-dependent manner

  • Insulin, and hemoglobin A1C (HbA1C) levels decreased significantly (P,0.05), and High-density lipoprotein cholesterol (HDL-C), apolipoprotein A-1 (ApoA-1), and triglyceride levels increased significantly (P,0.05) after 3 months of rosiglitazone treatment compared to baseline levels

  • Rosiglitazone treatment led to an improvement in glycemic control and an increase in serum PON1 activity

Read more

Summary

Introduction

Paraoxonase (PON1; E.C.3.1.8.1), a 43-kDa protein, catalyzes the hydrolysis of organophosphate esters, aromatic carboxylic acid esters, and carbamates in a calcium-dependent manner. High-density lipoprotein cholesterol (HDL-C)-related PON1 hydrolyzes hydrogen peroxide (H2O2) and plays a pivotal role in the prevention and/or elimination of the atherosclerotic process [1,2,3]. It is considered that the HDL-C protective effect on lowdensity lipoprotein cholesterol (LDL-C) oxidation is primarily from PON1 activity [1,2]. It has been reported that PON1 activity is reduced in patients with type 2 diabetes mellitus (DM) [3]. Rosiglitazone, a thiazolidinedione group drug, which is a peroxisome proliferator-activated receptor gamma (PPAR-gamma) agonist, is a treatment option for type 2 DM. Rosiglitazone decreases insulin resistance, effectively reduces plasma glucose and hemoglobin A1C (HbA1C) levels, causes a meaningful decrease in toxic free radicals, and has positive effects on the lipid profile and endothelial function

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.