Abstract

It is thought that the stress concentration at the root apex caused by orthodontic force induces root resorption. The purpose of this study was to investigate stress distribution at the root in cases of deviated root shapes using finite element models (FEMs). To clarify this, five three-dimensional FEMs divided by deviated root shape (normal, short, blunt, bent root apex, pipette shape) were constructed and, experimental orthodontic forces, applied in a vertical (intrusive) and horizontal (lingual) direction to the tooth axis. In the short-root model, significant stress was concentrated at the middle of the root. The blunt-shaped root model showed no significant stress concentration at the root. In the models with a bent or pipette-shaped root, significant stress was concentrated at the root apex. During orthodontic force application, stress concentration was observed in the root of the models with short, bent, and pipette-shaped roots, indicating that attention must be paid to root shape during orthodontic treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.