Abstract

To screen out plants with hyperaccumulation of heavy metals and explore the effects of root exudates on the phytoremediation in contaminated soils. The germination rates of five plants including Lolium perenne L. (L. perenne), Sorghum sudanense (Piper) Stapf. (S. sudanense), Pennisetum alopecuroides (L.) Spreng. (P. alopecuroides), Medicago sativa L. (M. sativa), and Trifolium repens L. (T. repens) in different concentrations of cadmium ion solution (0-100mg/kg) were determined. The growth adaptability of these five plants under conditions of contaminated soils with the above cadmium ion concentrations was also evaluated. S. sudanense and P. alopecuroides had higher germination rates and better growth than the three other plants and were selected as the latter experimental varieties. The activation amounts of cadmium ion in soils were measured using AAS in the presence of three types of root secretions (citric acid, glycine, and maltose) with different concentrations (10-500mmol/L). The activation amounts decrease in the following order: citric acid > glycine > maltose. The effect of these three root exudates on the removal of cadmium-contaminated soils in combination with S. sudanense and P. alopecuroides was also tested. For S. sudanense and P. alopecuroides, the maximum biomass and removal rate reaches the maximum at 100mmol/L of citric acid. Conversely, low concentrations (approximately 10-50mmol/L) of glycine and maltose are more effective for plant growth and phytoremediation. The addition of citric acid at 100mmol/L and approximately 10-50mmol/L of glycine and maltose can effectively promote the transfer of cadmium ion from roots to leaves and the accumulation of cadmium ion in leaves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.