Abstract

This study is devoted to evaluating the performance of an automatic ball-type balance system (ABB) installed in optical disk drives (ODDs) with consideration of the rolling friction between the balancing balls and the ball-containing race of the ABB. Research has been conducted to study the performance of the ABB by investigating the nonlinear dynamics of the system; however, the model adopted to describe the rolling friction between the balancing balls and their race was a simple stick-slip type, which does not reflect the realistic contact dynamics, leading to an inaccuracy in predicting ABB performance. In this study, a complete dynamic model of the ABB including a detailed rolling friction model for the balls based on Hertzian contact mechanics and hysteresis loss is established. The method of multiple scales is then applied to formulate a scaled model to find all possible steady-state ball positions and analyze stabilities. It is found that possible steady-state residing positions of the ball inside the race are multiple and form continuous ranges. Numerical simulations and experiments are conducted to verify the theoretical findings, especially for the rolling friction model. The obtained results are used to predict the level of residual vibration, with which the guidelines on dimension design and material choices of the ABB are distilled to achieve desired performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.