Abstract

The study of the interaction between RNA and DNA sequences in activating genes has important significance for understanding the mechanisms of RNA-mediated activation. Here, we used in vitro chromatin reconstitution approach to observe whether RNAs increase DNase I digestion, plasmid transfection to observe whether RNAs promote gene expression, and bioinformatics analysis to predict the binding ability of RNAs to centromere DNA (constitutive heterochromatin). Synthetic RNAs (23nt) that were complementary to mouse albumin gene and total liver RNA increased DNase I digestion sensitivity of mouse albumin gene, suggesting that RNAs can increase chromatin accessibility. Transcribed sense-antisense tandem Alu elements activated an enhanced green fluorescent protein reporter gene after stable transfection. Bioinformatics analysis showed that the binding strength of RNA population to centromere DNAs is significantly lower than that of their flanking sequences, which suggests that the centromere is not easily affected by RNAs produced from other transcribed regions and may be the reason why centromeres consist of constitutive heterochromatin. The results in this paper illustrate that RNAs complementary to DNA sequences play roles in activating genes. Since RNA is mainly produced from the cell’s own DNA, the work presented in this paper suggests that RNAs transcribed from DNA create feedback that activates DNA transcription.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.