Abstract

Sexual differentiation in Bombyx mori is controlled by sex-specific splicing of Bmdsx, which results in the omission of exons 3 and 4 in a male-specific manner. In B. mori, insulin-like growth factor II mRNA-binding protein (Imp) is a male-specific factor involved in male-specific splicing of Bmdsx. Male-specific Imp mRNA results from the male-specific inclusion of exon 8. To verify the link between histone methylation and alternative RNA processing in Imp, we examined the effects of RNAi-mediated knockdown of several histone methyltransferases on the sex-specific mRNA expression of Imp. As a result, male-specific expression of Imp mRNA was completely abolished when expression of the H3K79 methyltransferase DOT1L was repressed to <10% of that in control males. Chromatin immunoprecipitation-quantitative PCR analysis revealed a higher distribution of H3K79me2 in normal males than in normal females across Imp. RNA polymerase II (RNAP II) processivity assays indicated that RNAi knockdown of DOT1L in males caused a twofold decrease in RNAP II processivity compared to that in control males, with almost equivalent levels to those observed in normal females. Inhibition of RNAP II-mediated elongation in male cells repressed the male-specific splicing of Imp. Our data suggest the possibility that H3K79me2 accumulation along Imp is associated with the male-specific alternative processing of Imp mRNA that results from increased RNAP II processivity.

Highlights

  • Alternative splicing of pre-mRNA is an essential mechanism in the regulation of differential gene expression that can produce functionally distinct proteins from a single gene based on the developmental or physiological state of the cells in a multicellular organism [1,2]

  • To investigate whether these epigenetic marks are associated with male-specific splicing of II mRNA-binding protein (Imp) pre-mRNA, we performed RNAi knockdown of several histone methyl transferases (HMTases) such as ASH2, EZH2, SETD2, and DOT1L known to modify H3K4, H3K27, H3K36, and H3K79, respectively, in embryos

  • Higher distributions of H3K79me2 were observed in males than in females across Imp in negative control individuals (Figure 3C, left panel), DOT1L knockdown exerted a marked influence on the accumulation of H3K79me2, with an at least 10-fold reduction throughout the regions examined in males (Figure 3C, right panel)

Read more

Summary

Introduction

Alternative splicing of pre-mRNA is an essential mechanism in the regulation of differential gene expression that can produce functionally distinct proteins from a single gene based on the developmental or physiological state of the cells in a multicellular organism [1,2]. Recent studies estimate that 90% of human genes are alternatively spliced [3], and several thousand different mRNA isoforms can be produced from a single gene. Many examples describe how alternative splicing regulates gene expression, the mechanisms involved are less well understood [4,5,6,7,8]. Recent provocative studies point to a key function of chromatin structure and histone modification in alternative splicing regulation [9,10,11]. A genome-wide study across different species revealed that

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.