Abstract

Dredging is frequently used in the river mouths of eutrophic lakes to reduce internal phosphorus (P) loading from the sediment. However, the accumulation of P-adsorbed suspended particulate matter (SPM) from the inflowing rivers negatively affects the post-dredging sediment-water interface and ultimately increases internal P loading. Here, a 360-d experiment was carried out to investigate the influence of riverine SPM on the efficacy of dredging in reducing internal P loading. SPM was added to dredged and undredged sediments collected from the confluence area of Lake Chaohu. Several parameters related to internal P loading, including oxygen profile, soluble reactive P, and ferrous iron across the sediment-water interface, organic matter, alkaline phosphatase activity, and P fractions, were measured throughout the experimental period. The results showed that the P content (especially mobile P) in the sediment increased to the pre-dredging level with the accumulation of SPM in the dredged sediment. In addition, the P flux across the sediment-water interface increased with the accumulation of SPM. Several characteristics of SPM, including high organic matter content, mobile P, high activity of alkaline phosphatase, and high biological activity, were considered correlated with the post-dredging increase in internal P loading. Overall, this study showed that the heavily contaminated riverine SPM regulates the long-term efficacy of dredging as a nutrient management option in the confluence area. Management is needed to avoid or reduce this phenomenon during dredging projects of this nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.