Abstract

Agricultural contributions of nitrogen are a serious concern for many water resources and have spurred the implementation of riparian buffer zones to reduce groundwater nitrate (NO). The optimum design for buffers is subject to debate, and there are few long-term studies. The objective of this project was to determine the effectiveness over time (12 yr) of buffer types (trees, switchgrass, fescue, native, and a control) and buffer widths (8 and 15 m) by measuring groundwater NO-N and dissolved organic carbon (DOC) trends. At the intermediate groundwater depth (1.5-2.1 m), NO-N reduction effectiveness was 2.5 times greater (46 vs. 16%) for the wider buffer, and, regardless of width, buffer effectiveness increased 0.62% yr. Buffer vegetative type was never statistically significant. In the deep-groundwater depth (2.1-3.5 m), there was no change in NO-N removal over time, although the statistical interaction of width and vegetative type indicated a wide range of removal rates (19-82%). The DOC concentrations were analyzed at the field/buffer and buffer/stream sampling locations. Depending on location position and groundwater sampling depth, DOC concentrations ranged from 1.6 to 2.8 mg L at Year 0 and increased at a rate of 0.13 to 0.18 mg L yr but always remained low (≤5.0 mg L). Greater DOC concentrations in the intermediate-depth groundwater did not increase NO-N removal; redox measurements indicated intermittent reduced soil conditions may have been limiting. This study suggests that riparian buffer width, not vegetation, is more important for NO-N removal in the middle coastal plain of North Carolina for a newly established buffer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.