Abstract

Effective molecular strategies are needed to target pathogenic bacteria that thrive and proliferate within mammalian cells, a sanctuary inaccessible to many therapeutics. Herein, we present a class of cationic amphiphilic polyproline helices (CAPHs) with a rigid placement of the cationic moiety on the polyproline helix and assess the role of configuration of the unnatural proline residues making up the CAPHs. By shortening the distance between the guanidinium side chain and the proline backbone of the agents, a notable increase in cellular uptake and antibacterial activity was observed, whereas changing the configuration of the moieties on the pyrrolidine ring from cis to trans resulted in more modest increases. When the combination of these two activities was evaluated, the more rigid CAPHs were exceptionally effective at eradicating intracellular methicillin-resistant Staphylococcus aureus (MRSA) and Salmonella infections within macrophages, significantly exceeding the clearance with the parent CAPH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.