Abstract
Rice straw burning is a common post-harvest practice on rice paddy land, and it leads to the accumulation of rice straw ash (RSA) in paddy soil. To understand the role of RSA in determining the mobility and bioavailability of metal contaminants, this study investigated the effects of RSA amendment on the solubility and distribution of Cu in contaminated rice paddy soils with flooding incubation. The addition of RSA to the soils suppressed the release of Cu into the soil solutions, which was primarily attributed to the metal-binding capacity of the RSA. Additionally, after the soils were flooded, the increase in soil pH and decrease in redox potential resulted in the transformation of Cu into less soluble forms. The RSA amendment appeared to enhance the changes in pH and redox potential of the flooded soils and, consequently, the immobilization of Cu in the soils. The results suggest that the RSA can retard the bioavailability and movement of the metal in contaminated soils and, thus, lower the potential environmental risk of Cu toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.