Abstract

Photosensitized compounds from daidzein were studied in a riboflavin model system under visible light irradiation by high-performance liquid chromatography (HPLC). As the period of light irradiation increased, concentration of daidzein decreased significantly (P < 0.05) and new peaks of daidzein derivatives were observed and changed during photosensitization. Three new peaks from photosensitized daidzein were tentatively identified as 7-, 3', 4'-trihydroxyisoflavone (or 3'-hydroxydaidzein) and 2 dimmers of daidzein by a combination of HPLC-mass spectrometry (MS) and retention times of standard compounds by HPLC. Addition of sodium azide and removal of headspace oxygen treatment affected the formation of newly formed peaks. The type I pathway of riboflavin photosensitization played more important roles than type II pathways on the formation of daidzein derivatives. Practical Application: Isoflavones are important phytochemicals found in soy foods. Generally, many foods containing soy ingredients are displayed under visible light irradiation. Also, riboflavin can be found in many foods containing vegetables. The results of this study can be used to understand the stability and changes of isoflavone aglycones in soy and soy-based foods under visible light irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.