Abstract

BackgroundAlthough modified live virus (MLV) vaccines are commonly used for porcine reproductive and respiratory syndrome virus (PRRSV) control, there have been safety concerns due to the quick reversion of MLV to virulence during replication in pigs. Previous studies have demonstrated that mutant viruses emerged from lethal mutagenesis driven by antiviral mutagens and that those viruses had higher genetic stability compared to their parental strains because they acquired resistance to random mutation. Thus, this strategy was explored to stabilize the PRRSV genome in the current study.ResultsFour antiviral mutagens (ribavirin, 5-fluorouracil, 5-azacytidine, and amiloride) were evaluated for their antiviral effects against VR2332, a prototype of type 2 PRRSV. Among the mutagens, ribavirin and 5-fluorouracil had significant antiviral effects against VR2332. Consequently, VR2332 was serially passaged in MARC-145 cells in the presence of ribavirin at several concentrations to facilitate the emergence of ribavirin-resistant mutants. Two ribavirin-resistant mutants, RVRp13 and RVRp22, emerged from serial passages in the presence of 0.1 and 0.2 mM ribavirin, respectively. The genetic stability of these resistant mutants was evaluated in MARC-145 cells and compared with VR2332. As expected, the ribavirin-resistant mutants exhibited higher genetic stability compared to their parental virus.ConclusionsIn summary, ribavirin and 5-fluorouracil effectively suppressed PRRSV replication in MARC-145 cells. However, ribavirin-resistant mutants emerged when treated with low concentrations (≤0.2 mM) of ribavirin, and those mutants were genetically more stable during serial passages in cell culture.

Highlights

  • Modified live virus (MLV) vaccines are commonly used for porcine reproductive and respiratory syndrome virus (PRRSV) control, there have been safety concerns due to the quick reversion of modified live virus (MLV) to virulence during replication in pigs

  • Emergence of ribavirin-resistant mutants after serial passage of PRRSV in MARC-145 cells in the presence of ribavirin VR2332 was serially passaged in MARC-145 cells in the presence of ribavirin at concentrations of 0, 0.05, 0.1, 0.2, 0.3, 0.5, and 0.7 mM

  • In the current study, the possibility of rescuing a genetically stable PRRSV mutant during sequential passages in MARC-145 cells in the presence of mutagens was explored on the basis of previous reports that showed that mutant viruses that emerged from lethal mutagenesis driven by antiviral mutagens exhibited higher genetic stability than wild-type viruses [35,41,43]

Read more

Summary

Introduction

Modified live virus (MLV) vaccines are commonly used for porcine reproductive and respiratory syndrome virus (PRRSV) control, there have been safety concerns due to the quick reversion of MLV to virulence during replication in pigs. Previous studies have demonstrated that mutant viruses emerged from lethal mutagenesis driven by antiviral mutagens and that those viruses had higher genetic stability compared to their parental strains because they acquired resistance to random mutation. This strategy was explored to stabilize the PRRSV genome in the current study.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.