Abstract

To recycle the returned alloy effectively, effects of returns proportion on alloy composition, microstructure and compression properties of superalloy GH4169 were studied by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and thermal-mechanical simulator. The results show that returns addition has no significant effect on the main alloy elements content and the principle precipitates, but increases the volume fraction of Al2O3 inclusions, resulting in the increase of oxygen level of GH4169 alloy. Returns addition does not change the elastic and plastic deformation process at room temperature or at 1,150 °C, but high returns proportion GH4169 alloy shows improved compression strength and yield strength. The alloy with 100% returns shows a maximum compression strength 1,153.45 MPa at room temperature, while the alloy with 80% returns has a maximum value 69.3 MPa at 1,150 °C. Returns addition increases fluctuation range and reduces the stability of yield strength and compression strength of GH4169 alloy at room temperature. It is noted that the volume fraction and the size of Al2O3, and the fraction of Laves phase reach their maximum values in the GH4169 alloy with 60% returns, which exhibits maximum yield strength of 516.65 MPa at room temperature and 62.17 MPa at 1,150 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.