Abstract

BackgroundLong-term high-intensity exercise can lead to reproductive endocrine and spermatogenic dysfunction. This research is to investigate the effect of resveratrol on the reduction of reproductive dysfunction induced by high-intensity exercise, and to screen relevant factors and signal transduction pathways.MethodsRats were randomly divided into three groups, a control group, an intensive exercise group (IE group), and a resveratrol-treated group (RSV group). After 9 weeks of exercise, the sperm density and reproductive hormone concentrations were measured, along with antioxidation, inflammatory cytokine production, and histological analyses performed for each group. In addition, a proteomics analysis of the IE group and RSV group were conducted.ResultsWe found that compared with the control group, the average sperm density (P < 0.05) and testosterone concentration (P < 0.05) in the IE group decreased significantly. Additionally, in testis tissue the concentration of the inflammatory cytokines IL-6 (P < 0.01) and TNF-α (P < 0.01) increased significantly. Also, a significant decrease in superoxide dismutase (SOD) activity (P < 0.01) and a significant increase in the malondialdehyde (MDA) concentration (P < 0.01) were noted. In the RSV group, the average sperm density (P < 0.01), testosterone (P < 0.01) and follicle stimulating hormone (FSH) levels (P < 0.01) all increased in comparison to the IE group, and the concentration of IL-6 (P < 0.01) and TNF-α (P < 0.01) were found to be significantly decreased. Compared with the IE group, the SOD activity in the RSV group was significantly increased (P < 0.01), while the MDA content decreased (P < 0.01). Furthermore, histological analysis showed that the number of spermatogenic epithelial cells in the RSV group was higher than that of the IE group. There were a number of spermatogenic regulatory proteins identified in the proteomics analysis, including Clusterin, Piwi like homolog 1 (Piwil1), Zona pellucida binding protein (Zpbp), Heat shock-related 70 kDa protein 2 (Hspa2), Centrin 1, and Bardet-Biedl syndrome 2 protein (Bbs2). It was found that the proteins that differed between the two groups were mainly involved in pathways such as complement and coagulation cascades, the extracellular matrix-receptor interactions, etc.ConclusionsThe present study demonstrates that after high-intensity exercise, the inflammatory cascade in the tissue of the testis increases with decreased resistance to oxidation and disordered spermatogenic function. Resveratrol can improve the reproductive dysfunction of rats that was induced by high-intensity exercise. It mostly promotes reproductive function by increasing testosterone secretion, reducing the inflammatory response, improving the antioxidant capacity, affecting the expression of spermatogenic regulatory proteins, and enhancing the signal transduction pathway of spermatogenesis.

Highlights

  • Long-term high-intensity exercise can lead to reproductive endocrine and spermatogenic dysfunction

  • The results of the sperm density analysis showed that the average sperm density in the IE group [(1.47 ± 0.41) × 106/ml] was significantly lower than that of the control group [(2.12 ± 0.43) × 106/ml] (P < 0.05), and the sperm density in the RSV group [(2.75 ± 0.47) × 106/ml] was significantly higher than that found in the IE group (P < 0.01)

  • Histo-morphological analysis After hematoxylin and eosin (H&E) staining of testicular tissue isolated from each group, it was observed that the cells in each layer of the seminiferous tubules of the control group developed normally, with the layers arranged in an orderly manner with large amounts of spermatozoa (Fig. 2)

Read more

Summary

Introduction

Long-term high-intensity exercise can lead to reproductive endocrine and spermatogenic dysfunction. This research is to investigate the effect of resveratrol on the reduction of reproductive dysfunction induced by highintensity exercise, and to screen relevant factors and signal transduction pathways. Long-term high-intensity exercise may cause health problems in athletes with either clinical or subclinical symptoms [1]. Previous studies have found that long-term high-intensity exercise training affects neuro-endocrine function, leading to a condition called “exercise-hypogonadal male condition”, as well as reduced spermatogenic function [2]. The exact physiological mechanism underlying reproductive dysfunction caused by the high volume exercise is currently unclear, a number of investigations have speculated that such reproductive dysfunction is associated with the hypothalamus and pituitary (central mechanism component) or the testes (peripheral mechanism component) of hypothalamic–pituitary–gonadal regulatory axis [3, 4]. Oxidative stress may induced impairment in male reproductive system, which has a consequential effect upon testicular steroidogenesis and spermatogenesis [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call