Abstract

The regional effects of tidal volume (VT), respiratory frequency, and expiratory-to-inspiratory time ratio (TE/TI) during high-frequency ventilation (HFV) were studied in anesthetized and paralyzed dogs. Regional ventilation per unit of lung volume (spVr) was assessed with a positron camera during the washout of the tracer isotope 13NN from the lungs of 12 supine dogs. From the washout data, functional images of the mean residence time (MRT) of 13NN were produced and spVr was estimated as the inverse of the regional MRT. We found that at a constant VT X f product (where f represents frequency), increasing VT resulted in higher overall lung spV through the local enhancement of the basal spVr and with little effect in the apical spVr. In contrast, increasing VT X f at constant VT increased overall ventilation without significantly affecting the distribution of spVr values. TE/TI had no substantial effect in regional spVr distribution. These findings suggest that the dependency of gas transport during HFV of the form VT2 X f is the result of a progressive regional transition in gas transport mechanism. It appears, therefore, that as VT increases, the gas transport mechanism changes from a relative inefficient dispersive mechanism, dependent on VT X f, to the more efficient mechanism of direct fresh gas convection to alveoli with high regional tidal volume-to-dead-space ratio. A mathematical model of gas transport in a nonhomogeneous lung that exhibits such behavior is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.