Abstract
Numerical calculations for the Spallation Neutron Source accumulator ring indicate that lattice resonances excited by the space-charge potential can increase a mismatch significantly by deforming the beam distribution in phase space. Hence increased mismatch leads to enhanced envelope oscillations that are driving the 2:1 parametric resonance leading to halo formation, even for initially matched beams. We have observed this behavior for the 2 nu(x) - 2 nu(y) = 0 resonance and for the 4 nu(y) = 23 resonance. This mechanism for halo formation peculiar to rings through resonance driven mismatch is very sensitive to the tunes, which emphasizes the importance of a careful choice of operating point in tune space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.