Abstract

Power training programs have proved to be effective in improving components of physical fitness such as speed. According to the concept of training specificity, it was postulated that exercises must attempt to closely mimic the demands of the respective activity. When transferring this idea to speed development, the purpose of the present study was to examine the effects of resisted sprint (RST) vs. traditional power training (TPT) on physical fitness in healthy young adults. Thirty-five healthy, physically active adults were randomly assigned to a RST (n = 10, 23 ± 3 years), a TPT (n = 9, 23 ± 3 years), or a passive control group (n = 16, 23 ± 2 years). RST and TPT exercised for 6 weeks with three training sessions/week each lasting 45–60 min. RST comprised frontal and lateral sprint exercises using an expander system with increasing levels of resistance that was attached to a treadmill (h/p/cosmos). TPT included ballistic strength training at 40% of the one-repetition-maximum for the lower limbs (e.g., leg press, knee extensions). Before and after training, sprint (20-m sprint), change-of-direction speed (T-agility test), jump (drop, countermovement jump), and balance performances (Y balance test) were assessed. ANCOVA statistics revealed large main effects of group for 20-m sprint velocity and ground contact time (0.81 ≤ d ≤ 1.00). Post-hoc tests showed higher sprint velocity following RST and TPT (0.69 ≤ d ≤ 0.82) when compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to 4.5% for RST [90%CI: (−1.1%;10.1%), d = 1.23] and 2.6% for TPT [90%CI: (0.4%;4.8%), d = 1.59]. Additionally, ground contact times during sprinting were shorter following RST and TPT (0.68 ≤ d ≤ 1.09) compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to −6.3% for RST [90%CI: (−11.4%;−1.1%), d = 1.45) and −2.7% for TPT [90%CI: (−4.2%;−1.2%), d = 2.36]. Finally, effects for change-of-direction speed, jump, and balance performance varied from small-to-large. The present findings indicate that 6 weeks of RST and TPT produced similar effects on 20-m sprint performance compared with a passive control in healthy and physically active, young adults. However, no training-related effects were found for change-of-direction speed, jump and balance performance. We conclude that both training regimes can be applied for speed development.

Highlights

  • Regular physical exercise defined as a specific subset of physical activity maintains and develops physical fitness, health, and wellness (Sjøgaard et al, 2016; Chieffi et al, 2017)

  • The main findings of this study were that (i) peak sprint velocity was higher and ground contact times were shorter following resisted sprint training (RST) and traditional power training (TPT) compared with control; (ii) RST and TPT induced similar improvements in sprint performance; and (iii) at post tests, no differences were found between TPT, RST, and control in change-of-direction speed, jump and balance performance

  • RST and TPT produced similar improvements in 20-m sprint performance compared to a passive control

Read more

Summary

Introduction

Regular physical exercise (e.g., resistance training) defined as a specific subset of physical activity maintains and develops physical fitness, health, and wellness (Sjøgaard et al, 2016; Chieffi et al, 2017). Ross et al (2009) examined the impact of a 7-week RST that was conducted on a treadmill vs heavy-resistance training, and a combined RST and strength training protocol on sprint performance in male athletes with a mean age of 20 years. As a result, these authors reported gains in sprint velocity being higher following RST and combined RST and heavy-resistance training (5–8%) when compared to single heavy-resistance training (2%). There is no study available that examined how the effects of RST vs. (traditional) power training (i.e., 30–60% 1-repetition maximum) translate to sprint performance (e.g., sprint velocity) and running kinematics (e.g., step length, ground contact time)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call