Abstract

The aim of this study was to determine the impact of resistance exercise on neuromuscular junction (NMJ) architecture. Eighteen Sprague-Dawley rats either participated in a 7-week resistance training program or served as untrained controls. Following the experimental period, the NMJs of soleus muscles were visualized with immunofluorescent techniques, and muscle fibers were stained histochemically. Results indicate that resistance training significantly (P < 0.05) increased endplate perimeter length (15%) and area (16%), and significantly enhanced the dispersion of acetylcholine receptors within the endplate region. Pre- and post-synaptic modifications to resistance exercise were well-coupled. No significant alterations in muscle fiber size or fiber type were detected. The data presented here indicate that the stimulus of resistance training was sufficiently potent to remodel NMJ structure, and that this effect cannot be attributed to muscle fiber hypertrophy or fiber type conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call