Abstract

We have previously reported that resistance exercise improved the iron status in iron-deficient rats. The current study investigated the mechanisms underlying this exercise-related effect. Male 4-week-old rats were divided into a group sacrificed at the start (week 0) (n = 7), a group maintained sedentary for 6 weeks (S) or a group that performed exercise for 6 weeks (E), and all rats in the latter groups were fed an iron-deficient diet (12 mg iron/kg) for 6 weeks. The rats in the E group performed climbing exercise (5 min × 6 sets/day, 3 days/week). Compared to the week 0 rats, the rats in the S and E groups showed lower tissue iron content, and the hematocrit, hemoglobin, plasma iron, and transferrin saturation values were all low. However, the tissue iron content and blood iron status parameters, and the whole body iron content measured using the whole body homogenates of the rats, did not differ between the S group and the E group. The messenger RNA (mRNA) expression levels of hepcidin, duodenal cytochrome b, divalent metal transporter 1, and ferroportin 1 did not differ between the S group and the E group. The apparent absorption of iron was significantly lower in the E group than in the S group. Therefore, it was concluded that resistance exercise decreases iron absorption, whereas the whole body iron content is not affected, and an increase in iron recycling in the body seems to be responsible for this effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call