Abstract
Abstract We investigate the effects of residual tensor force (TF) and pairing force on the Gamow–Teller (GT) transitions in four magic nuclei, 48Ca, 90Zr, 132Sn and 208Pb. The TF is taken into account by using the Brückner G-matrix theory with the charge-dependent (CD) Bonn potential as the residual interaction of charge-exchange quasiparticle random phase approximation (QRPA). We found that particle–particle (p–p) tensor interaction does not affect the GT transitions because of the closed shell nature in the nuclei, but repulsive particle–hole (p–h) residual interaction for the p–h configuration of spin-orbit partners dominates the high-lying giant GT states for all of the nuclei. It is also shown that appreciable GT strengths are shifted to a lower energy region by the attractive p–h TF for the same jπ = jν configuration, and produce the low-lying GT peak about 2.5 MeV in 48Ca. Simultaneously, in 90Zr and 132Sn, the low-energy GT strength appears as a lower energy shoulder near the main GT peak. On the other hand, the shift of the low-lying GT state is not seen clearly for 208Pb because of the strong spin-orbit splitting of high j orbits, which dominates the GT strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.