Abstract

Carbon dioxide (CO2) dissolution is the secondary trapping mechanism enhancing the long-term security of CO2 in confined geological formations. CO2 injected into a randomly multilayered formation will preferentially migrate along high permeability layers, increasing CO2 dissolution efficiency. In this study, sequential Gaussian simulation is adopted to construct the stratified saline formations, and two-phase flow based on MRST is established to illustrate the spatial mobility and distribution of CO2 migration. The results show that gravity index G and permeability heterogeneity σY2 are the two predominant factors controlling the spatial mobility and distribution of CO2 transports. The CO2 migration shows a totally different spatial mobility under different gravity index and heterogeneity. When the permeability discrepancy is relatively larger, CO2 preferentially migrates along the horizontal layer without accompanying the vertical migration. For the formation controlled by gravity index, CO2 migration is governed by supercritical gaseous characteristics. For the medium gravity index, the upward and lateral flow characteristics of the CO2 plume is determined by gravity index and heterogeneity. When the gravity index is smaller, permeability heterogeneity is the key factor influencing CO2 plume characteristics. Permeability heterogeneity is the decisive factor in determining final CO2 dissolution efficiency. This investigation of CO2 mobility in randomly multilayered reservoirs provides an effective reference for CO2 storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call