Abstract

Superficial cartilage defect is an important factor that causes osteoarthritis. Therefore, it is very important to investigate the influence of superficial cartilage defects on its surface morphology and mechanical properties. In this study, the knee joint cartilage samples of adult pig were prepared, which were treated by enzymolysis with chymotrypsin and physical removal with electric friction pen, respectively. Normal cartilage and surface treated cartilage were divided into five groups: control group (normal cartilage group), chymotrypsin immersion group, chymotrypsin wiping group, removal 10% group with electric friction pen, and removal 20% group with electric friction pen. The surface morphology and structure of five groups of samples were characterized by laser spectrum confocal microscopy and environmental field scanning electron microscopy, and the mechanical properties of each group of samples were evaluated by tensile tests. The results show that the surface arithmetic mean height and fracture strength of the control group were the smallest, and the fracture strain was the largest. The surface arithmetic mean height and fracture strength of the removal 20% group with electric friction pen were the largest, and the fracture strain was the smallest. The surface arithmetic mean height, fracture strength and fracture strain values of the other three groups were all between the above two groups, but the surface arithmetic mean height and fracture strength of the removal 10% group with electric friction pen, the chymotrypsin wiping group and the chymotrypsin soaking group decreased successively, and the fracture strain increased successively. In addition, we carried out a study on the elastic modulus of different groups, and the results showed that the elastic modulus of the control group was the smallest, and the elastic modulus of the removal 20% group with electric friction pen was the largest. The above study revealed that the defect of the superficial area of cartilage changed its surface morphology and structure, and reduced its mechanical properties. The research results are of great significance for the prevention and repair of cartilage injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.