Abstract

The objective of this study was to investigate the therapeutic potential of poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with recombinant human growth and differentiation factor-5 (rhGDF-5) on the disc degeneration induced by needle puncture in a rat caudal disc model. The rhGDF-5-loaded PLGA microspheres were prepared by the water-oil-water double-emulsion solvent evaporation method, and release kinetics was determined over 42 days. Rats that underwent 21-G needle puncture at rat tail discs were injected with rhGDF-5/PLGA microspheres at four weeks after needle injury. At eight weeks after the injection, disc height, glycosaminoglycans content, and DNA content of the discs were evaluated. In addition, gene expression analysis of aggrecan, collagen type I, and collagen type II in the rat nucleus pulposus was measured by real-time polymerase chain reaction. Rat discs were also assessed by histology using hematoxylin and eosin stain. Encapsulation of rhGDF-5 in PLGA microspheres guaranteed a sustained release of active rhGDF-5 for more than 42 days. The injection of GDF-5/PLGA microspheres resulted in a statistically significant restoration of disc height (p < 0.01), improvement of sulfated glycosaminoglycan (p < 0.05), DNA content (p < 0.05), and significantly increased mRNA levels of collagen type II (p < 0.01), and the differentiation index (the ratio of collagen type II to collagen type I, p < 0.01). In addition, rhGDF-5/PLGA microspheres treatment also improved histological changes induced by needle puncture. The results of this study suggest that injection of rhGDF-5 loaded in PLGA microspheres into rat tail discs may be as a promising therapy strategy to regenerate or repair the degenerative disc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call