Abstract
Previous cross-sectional studies have reported that higher drop heights do not always result in improved performance, and may increase injury risk during drop jumps (DJ). The purpose of this study was to analyze the kinematics and kinetics during the DJ in order to determine the relative drop height that maximize performance without exposing the lower extremity joints to unnecessary loads. Twenty male Division I college volleyball players volunteered. Data were collected using 11 infrared cameras and two force platforms. Participants performed three maximal effort countermovement jumps (CMJ). Subsequently, 50, 75, 100, 125, and 150% CMJ height (CMJH) was used to scale their relative drop height for three DJ trials per height. There was a significant increase in the landing phase impulse when the drop height exceeded 100%CMJH (p<0.05). At 125% and 150%CMJH, the negative work of knee and ankle significantly increased. The incoming velocity, kinetic energy, landing depth, maximum ground reaction force, landing impulse and power absorption of knee and ankle all increased with drop height (p<0.05). DJ height and reactive strength index following the drop landing were not statistically different between any of the drop heights (p>0.05). 50% to 100%CMJH may be the appropriate individual relative drop height for the DJ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.