Abstract

A series of aluminas were obtained through rehydration–dehydration of the initial alumina under different hydrothermal conditions. To investigate the influences of rehydration temperature on the physicochemical properties of the as-obtained aluminas, several techniques were applied, such as X-ray powder diffraction, nitrogen adsorption, scanning/transmission electron microscopy, Fourier transform infrared, thermogravimetric analysis, and 27Al MAS NMR. The results show that crystal size and morphology of alumina particles changed as the treatment temperature was increased, and alumina crystallites grew mainly along two surface orientations. Consequently, the changes in textural properties of the aluminas took place. In addition, the rehydration process increased not only the weak acid sites but also the strong acid sites, which is closely related to the growth of the (111) and (110) surfaces of γ-Al2O3. The two type acid sites were originated from coordinately unsaturated four-fold aluminum atoms. TPR for a series of Ni(Mo) catalysts were carried out and the results show that rehydration process increased the surface acidity and basicity of alumina simultaneously, which enhanced the interacting force of Ni and Mo species with aluminas respectively. This interaction is closely related to the hydrodenitrogenation (HDN) activity of quinoline over the corresponding NiMo/γ-Al2O3 catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.