Abstract

Diatom fossils from core sediments and living diatoms from water samples of Notoro Lagoon in northern Japan were examined to evaluate natural climate effects on lagoon environmental changes. In 1974, the artificial inlet was excavated. Immediately after, the anoxic bottom water in Notoro Lagoon began to disappear due to an increasing water exchange rate. However, chemical oxygen demand (COD) in the bottom water of Notoro Lagoon gradually increased, with fluctuations, during the last 30 years. In addition, the dominant diatom assemblages in Notoro Lagoon shifted to ice-related and spring bloom taxa after the excavation. The dominant taxa of each year in the sediment core were also strongly related to the timing of lagoon ice melting. This is because the COD in Notoro Lagoon was affected by the deposited volume of blooming diatoms, which was controlled by the duration of ice cover and the timing of ice discharge to the Okhotsk Sea likely due to an air pressure pattern change over the northern North Pacific like the Pacific Decadal Oscillation (PDO).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call