Abstract

Residence time is an important indicator for river environmental management. In this paper, a 3D hydrodynamic model has been successfully applied to Little Manatee River to characterize the mixing and transport process and residence time. The model employs horizontal curvilinear orthogonal grids to represent the complex river system that consists of branches and bayous. The model has been satisfactorily calibrated and verified by using two continuous data sets. The data sets consist of hourly observations of all forcing boundaries, including freshwater inputs, tides, winds, salinity and temperatures at bay boundary, and air temperatures for model simulations. The data sets also consist of hourly observations of water levels, salinity, and temperature at several river stations. The calibrated and verified hydrodynamic model was used to predict residence time in the Little Manatee River. Under the minimum flow of 0.312 m3/s, the pulse residence time (PRT) is 108 days. Model simulations were also conducted for 17 flow scenarios. Empirical regression equations have been satisfactorily derived to correlate PRT to freshwater inflow. Correlation coefficient R2 is 0.982 for PRT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.