Abstract
Most open ocean and climate models assume a constant background mixing; however, vertical mixing should be reduced under the sea ice in polar region because the sea-ice cover acts as an insulator against the momentum transfer between the atmosphere and ocean. Using a global Ocean General Circulation Model (OGCM), we show that the Atlantic meridional overturning circulation (AMOC) can be substantially affected by reduced vertical mixing under the sea ice. When the background diffusivity under the sea ice is reduced by 1 order less than that in ice-free regions, the volume transport of the AMOC in the upper 3000 m is increased by up to 14% accordingly. The numerical experiment suggests that the reduced background diffusivity makes waters denser in the Arctic Ocean and the denser water is transported into the Nordic Seas to push up the isopycnal surfaces over the Greenland- Iceland-Scotland Ridge. Consequently, the AMOC is enhanced by overflows of the denser water crossing the Denmark Strait.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.