Abstract

AbstractWithdrawal of water from streams and groundwater is increasing in Midwestern North America and is a potential threat to coldwater fishes. We examined the effects of summer water withdrawals on brook trout Salvelinus fontinalis populations and water warming rates by diverting 50–90% of summer baseflow from a 602‐m treatment zone (TZ) in a groundwater‐influenced Michigan stream during 1991–1998. We compared density of brook trout in fall, and spring‐to‐fall growth and survival of brook trout, between the TZ and an adjacent reference zone (RZ) whose flows were not altered. Flow reductions had no significant effects on the density of brook trout in fall or spring‐to‐fall survival of brook trout. However, spring‐to‐fall growth of brook trout in the TZ declined significantly when 75% flow reductions occurred. Cold upstream temperatures and the relatively short study reach kept thermal habitat conditions excellent for brook trout in the TZ throughout the dewatering experiments. These findings suggest that brook trout can tolerate some seasonal loss of physical habitat if temperature conditions remain suitable. In summer 1999, we experimentally assessed the influence of flow reduction on the warming rate through the TZ by diverting from 0% to 90% of flow around the TZ in 3‐ or 4‐day trials on a randomised schedule. Average daily temperature increased exponentially as stream flows declined from normal summer levels. Our findings suggest the risk of trout habitat loss from dewatering is potentially large and proportional to the magnitude of withdrawal, especially as thermal conditions approach critical levels for trout.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call