Abstract

BackgroundHIV-1 pol, which encodes enzymes required for virus replication, is initially translated as a Gag-Pol fusion protein. Gag-Pol is incorporated into virions via interactions with Gag precursor Pr55gag. Protease (PR) embedded in Gag-Pol mediates the proteolytic processing of both Pr55gag and Gag-Pol during or soon after virus particle release from cells. Since efficient Gag-Pol viral incorporation depends on interaction with Pr55gag via its N-terminal Gag domain, the prevention of premature Gag cleavage may alleviate Gag-Pol packaging deficiencies associated with cleavage enhancement from PR.ResultsWe engineered PR cleavage-blocking Gag mutations with the potential to significantly reduce Gag processing efficiency. Such mutations may mitigate the negative effects of enhanced PR activation on virus assembly and Gag-Pol packaging due to an RT dimerization enhancer or leucine zipper dimerization motif. When co-expressed with Pr55gag, we noted that enhanced PR activation resulted in reduced Gag-Pol cis or trans incorporation into Pr55gag particles, regardless of whether or not Gag cleavage sites within Gag-Pol were blocked.ConclusionsOur data suggest that the amount of HIV-1 Gag-Pol or Pol viral incorporation is largely dependent on virus particle production, and that cleavage blocking in the Gag-Pol N-terminal Gag domain does not exert significant impacts on Pol packaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call