Abstract

The nitrogen-containing gases pyrolyzed from sewage sludge can be converted into NOx compounds, which would cause severe environmental pollution. This study developed a new strategy to reduce the emission of NOx precursors such as ammonia (NH3) and hydrogen cyanide (HCN) using red mud. The highest reduction efficiencies (15.10% for NH3 and 24.72% for HCN) were achieved at 900 °C while compared with those pyrolyzed from raw sludge without the addition of red mud. The transformation and distribution of nitrogenous compounds in three-phase pyrolysates were studied at 400–800 °C for pyrolysis process of a model soybean protein compound. The nitrogenous compounds, i.e., amine-N, heterocyclic-N, and nitrile-N, were identified as the three main intermediates related with the production of NOx precursors. Ferric oxide (Fe2O3) and calcium oxide (CaO) presented in red mud were identified as the driving force which facilitated nitrogen stabilization in char (e.g., at 800 °C, 21.63% increase of char-N after addition of Fe2O3, and 41.54% increase of char-N after addition of CaO). These metal oxides possibly reacted with protein-N to form FexN and CaCxNy, inhibited the secondary cracking of amine-N compounds in tar (e.g., at 800 °C, 2.33% increase of amine-N after addition of Fe2O3, and 0.38% increase of amine-N after addition of CaO), and reduced the production of nitrile-N (e.g., at 800 °C, 30.41% reduction of nitrile-N after addition of Fe2O3, and 27.40% reduction of nitrile-N after addition of CaO) and heterocyclic-N compounds (e.g., at 800 °C, 21.60% reduction of heterocyclic-N after addition of Fe2O3, and 13.98% reduction of heterocyclic-N after addition of CaO). Hence, the emission of NH3 and HCN in gas phase can be controlled. Moreover, Fe2O3 showed better capability in controlling the emission of NOx precursors than CaO (higher reduction of NH3-N and higher reduction of HCN-N). These results indicate that red mud is an efficient catalyst to reduce emission of NOx precursors through controlling intermediates at 400–800 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call