Abstract

Recombinant human bone morphogenetic protein-2 (rhBMP-2) is known to induce orthotopic and ectopic bone formation in vivo. Several in vitro studies using rat or mouse clonal cell lines have shown that rhBMP-2 may be involved in the differentiation of osteoblasts from osteoblast precursor cells or stromal cells in the bone marrow. However, there is little information available about the effects of rhBMP-2 on cultured human bone marrow cells. We investigated the effects of rhBMP-2 cultured on human bone marrow cells and osteoblastic cells on various biomaterials. Human bone cells were divided into fresh bone marrow cells, fibroblast colony-forming units (cfu-F, stromal precursors), and osteoblastic cells. The cells were cultured with or without rhBMP-2 on various biomaterials, including titanium alloy, pure titanium, cobalt alloy, and hydroxyapatite. It was found that rhBMP-2 (500 ng/mL) significantly stimulated alkaline phosphatase production by fresh bone marrow cells and cfu-F. However, when cultured on titanium alloy or pure titanium, only fresh bone marrow cells showed an increase of alkaline phosphatase production after rhBMP-2 stimulation. Production of osteocalcin, a marker of mature osteoblasts, was not stimulated by rhBMP-2 in any combinations tested. These findings suggest that rhBMP-2 may be involved in inducing the differentiation of osteoblast precursor cells into osteoblastic cells rather than stimulating further differentiation of osteoblastic cells into mature osteoblasts. In addition, grafts of fresh human bone marrow cells of cfu-F stimulated by rhBMP-2 may have the potential to promote bone formation at sites of nonunion as well as around titanium joint prostheses. © 1997 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.