Abstract

Resistance arteries are an important target for vascular gene therapy because they play a key role in the regulation of tissue blood flow. The present study was designed to determine the effects of recombinant endothelial (e) nitric oxide synthase (NOS) gene expression on vasomotor reactivity of small brain stem arteries (internal diameter, 253 +/- 2.5 microm). Arterial rings were exposed ex vivo to an adenoviral vector (10(9) and 10(10) plaque-forming units/ml) encoding eNOS gene or beta-galactosidase gene. Twenty-four hours after transduction, vascular function was examined by isometric force studies. Transgene expression was evident mainly in adventitia. In arteries with endothelium transduced with eNOS gene but not with control beta-galactosidase gene, relaxations to bradykinin and substance P were significantly augmented. Removal of endothelium abolished relaxations to bradykinin and substance P in control and beta-galactosidase arteries. However, in endothelium-denuded arteries transduced with recombinant eNOS, bradykinin and substance P caused relaxations that were abolished in the presence of the NOS inhibitor N(G)-nitro-L-arginine methyl ester. In control arteries, endothelium removal augmented relaxations to the nitric oxide donors sodium nitroprusside and diethylamine NONOate. This augmentation was absent in eNOS gene-transduced arteries without endothelium. Our results suggest that, in small brain stem arteries, expression of recombinant eNOS increases biosynthesis of nitric oxide. Adventitia of small arteries is a good target for expression of recombinant eNOS. Genetically engineered adventitial cells may serve as a substitute source of nitric oxide in cerebral arteries with dysfunctional endothelium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.