Abstract

We used event-related lateralizations of the EEG (ERLs) and reversed vision to study visuomotor processing with conflicting proprioceptive and visual information during pointing. Reversed vision decreased arm-related lateralization, probably reflecting the simultaneous activity of left and right arm specific neurons: neurons in the hemisphere contralateral to the observed action were probably activated by visual feedback, neurons in the hemisphere contralateral to the response side by the somatomotor feedback. Lateralization related to the target in parietal cortex increased, indicating that visual to motor transformation in parietal cortex required additional time and resources with reversed vision. A short period of adaptation to an additional lateral displacement of the visual field increased arm-contralateral activity in parietal cortex during the movement. This is in agreement with the Clower et al. study (1996), which showed that adaptation to a lateral displacement of the visual field is reflected in increased parietal involvement during pointing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call