Abstract
Soil colloids (< 0.002 mm) were extracted from three types of soils to make the colloid-bound forms of Zn, Cu, and Pb solution. The clay mineral types and composition of the colloids, the adsorption characteristics of the colloids, and the effect of readily dispersible colloid on the transport of metals and the quality of the soils and groundwater were studied. The results showed that the adsorption capacity of Cu, Zn, and Pb was greater for the Aquic Vertisols (Shajiang Black soil) as compared to the Udic Luvisols (Brown soil) and Usdic Luvisols (Cinnamon soil), due to the difference of clay content and clay mineral composition in the different soils. The adsorption capacity of Pb was much higher than that of Zn and Cu for the same soils, which would contribute to the chemical properties of metals and specific adsorption characters of the colloids. The mobility of Zn in soils was greater than that of Cu and Pb, while similar trend was found in the transportation processes for Zn and Cu. The concentration of Zn and Cu in leachates increased as the leaching solution volume increased, but the migration of Pb was negligible, and the concentration of Pb could not been detected in leachates even after 7.5 pore volume leaching solution. The influence of mobility on Zn and Cu transport was different for different type of colloids. The mobility caused by readily dispersible colloids from Aquic Vertisols was greater as compared to that of Udic Luvisols and Usdic Luvisols. Analysis of soils after column leaching indicated that Zn was distributed much deeper than Cu, but Pb was almost not migrated, and mainly accumulated in the soil surface. Therefore, Zn had greater tendency for the groundwater pollution than Cu and Pb, and Pb tends to contaminate the surface soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.