Abstract

The objective of this study is to numerically simulate the effect of conjugate heat transfer in a heat conducting vertical walled cavity filled with Copper-Water nanofluid. The analysis uses a two-dimensional rectangular enclosure under conjugate convective-conductive heat transfer conditions. The enclosure was subject to a constant conduction-convection uniform heat flux at the left wall generating a natural convection flow. The thicknesses of the other boundaries of the wall are assumed to be zero. The right wall is kept at a low constant temperature while the horizontal walls are assumed to be adiabatic. A heat conducting moveable divider is attached on the bottom horizontal wall. The study has been carried out for the Rayleigh number in the range of 104 ≤ Ra ≤ 106 and for the solid volume fraction 0 ≤ ɸ ≤ 0.05. The investigation is to be arrived out at different non-dimensional governing parameters. The effect of Rayleigh number and solid fluid thermal conductivity ratio on the hydrodynamic and thermal characteristic of flow has been analyzed. Results are to be presented in terms of streamlines, isotherms and average Nusselt number of the nanofluid for different values of governing parameters.The objective of this study is to numerically simulate the effect of conjugate heat transfer in a heat conducting vertical walled cavity filled with Copper-Water nanofluid. The analysis uses a two-dimensional rectangular enclosure under conjugate convective-conductive heat transfer conditions. The enclosure was subject to a constant conduction-convection uniform heat flux at the left wall generating a natural convection flow. The thicknesses of the other boundaries of the wall are assumed to be zero. The right wall is kept at a low constant temperature while the horizontal walls are assumed to be adiabatic. A heat conducting moveable divider is attached on the bottom horizontal wall. The study has been carried out for the Rayleigh number in the range of 104 ≤ Ra ≤ 106 and for the solid volume fraction 0 ≤ ɸ ≤ 0.05. The investigation is to be arrived out at different non-dimensional governing parameters. The effect of Rayleigh number and solid fluid thermal conductivity ratio on the hydrodynamic and therma...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.